Sequential Plan Recognition

نویسندگان

  • Reuth Mirsky
  • Roni Stern
  • Ya'akov Gal
  • Meir Kalech
چکیده

Plan recognition algorithms infer agents’ plans from their observed actions. Due to imperfect knowledge about the agent’s behavior and the environment, it is often the case that there are multiple hypotheses about an agent’s plans that are consistent with the observations, though only one of these hypotheses is correct. This paper addresses the problem of how to disambiguate between hypotheses, by querying the acting agent about whether a candidate plan in one of the hypotheses matches its intentions. This process is performed sequentially and used to update the set of possible hypotheses during the recognition process. The paper defines the sequential plan recognition process (SPRP), which seeks to reduce the number of hypotheses using a minimal number of queries. We propose a number of policies for the SPRP which use maximum likelihood and information gain to choose which plan to query. We show this approach works well in practice on two domains from the literature, significantly reducing the number of hypotheses using fewer queries than a baseline approach. Our results can inform the design of future plan recognition systems that interleave the recognition process with intelligent interventions of their users.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Sampling Plan with Fuzzy Parameters

In this paper a new sequential sampling plan is introduced in which the acceptable quality level (AQL) and the lot tolerance percent defective (LTPD) are a fuzzy number. This plan is well defined, since, if the parameters are crisp, it changes to a classical plan. For such a plan, a particular table of rejection and acceptance is calculated and compared with the classical one. Keywords : St...

متن کامل

Partial Plan Recognition with Incomplete Information

This work explores the benefits of using user models for plan recognition problems in a real-world application. Selfinterested agents are designed for the prediction of resource usage in the UNIX domain using a stochastic approach to automatically acquire regularities of user behavior. Both sequential information from the command sequence and relational information such as system’s responses an...

متن کامل

Efficient Incremental Plan Recognition Method for Cognitive Assistance

In this paper we propose an efficient and incremental plan recognition method for cognitive assistance. We design our unique method based on graph matching and heuristic chaining rules in order to deal with interleaved and sequential activities. The finding of this research work is to be applied to predict abnormal behavior of the users, and optimize assistance for them. We have studied a use c...

متن کامل

Sequential Plan Recognition

Plan recognition algorithms need to maintain all candidate hypotheses which are consistent with the observations, even though there is only a single hypothesis that is the correct one. Unfortunately, the number of possible hypotheses can be exponentially large in practice. This paper addresses the problem of how to disambiguate between many possible hypotheses that are all consistent with the a...

متن کامل

Discovering Causal Chains by Integrating Plan Recognition and Sequential Pattern Mining

In this paper we define the notion of causal chains. Causal chains are a particular kind of sequential patterns that reflect causality relations according to background knowledge. We also present an algorithm for mining causal chains from a collection of action traces. We run this algorithm on a realworld domain and observe that causal chains can be computed efficiently by quickly identifying i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016